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Abstract
Until 2022, the US patent citation network contained almost 10 million patents and over 100 million citations, 
presenting a challenge in analysing such expansive, intricate networks. To overcome limitations in analysing 
this complex citation network, we propose a stochastic gradient relational event additive model (STREAM) 
that models the citation relationships between patents as time events. While the structure of this model 
relies on the relational event model, STREAM offers a more comprehensive interpretation by modelling the 
effect of each predictor non-linearly. Overall, our model identifies key factors driving patent citations and 
reveals insights in the citation process.
Keywords: B-splines, citation networks, patent analysis, relational event models, stochastic gradient descent

Received: April 24, 2023. Revised: February 26, 2024. Accepted: April 16, 2024 
© The Royal Statistical Society 2024. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:// 
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.

1 Introduction
Patents are not only a means of protecting intellectual property but also provide valuable informa
tion about the state of the art in technology and the evolution of knowledge and innovation over 
time (Trajtenberg & Jaffe, 2002). The patent citation network captures the relationships between 
patents, where each citation represents a connection between two patents, indicating that the cit
ing patent has built upon the knowledge contained in the cited patent (Sharma & Tripathi, 2017).

Patents represent a significant investment for many companies, and understanding the competi
tive landscape, and the strengths and weaknesses of competitors’ patent portfolios can be essential 
for making strategic decisions about technology development, licensing, and litigation (Lerner, 
1994). Analysing the factors that lead to a patent being cited can provide valuable insights into 
the underlying mechanisms driving innovation. Additionally, understanding the drivers of patent 
citation can inform decision-making in a variety of contexts, such as technology development, in
tellectual property management, and innovation policy (Ernst, 2003). However, patent data ana
lysis is a complex and challenging task, requiring advanced techniques and tools for managing and 
analysing large and complex datasets.

The relational event model (REM) (Butts, 2008; Perry & Wolfe, 2013) has emerged as a power
ful tool for modelling complex relational data. Although REMs were first introduced in the social 
sciences as a way of modelling the temporal dependencies between interactions in social networks, 
they have been applied in many different contexts, such as two-mode networks (Vu et al., 2017), 
animal behavioural interactions (Tranmer et al., 2015), and more recently, financial transactions 
(Bianchi et al., 2022) and invasive species analysis (Juozaitienė et al., 2023). Following these ex
amples, REMs can be a valuable tool for analysing citation networks of patents, as they allow us to 
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model the complex relationships between citing and cited patents, identifying the factors that in
fluence the diffusion of knowledge and innovation. However, the practical applicability of REMs 
is limited by their runtime complexity (Welles et al., 2014), a problem rooted in the denominator 
of the partial likelihood on which the estimation of most REMs is based. There have been some 
early attempts to model citation networks through a REM-like approach (Vu et al., 2011). 
Recently Lerner and Lomi (2020) tackled the inherent computational issues by showing the ro
bustness of REM estimation when controls and cases are sub-sampled through a nested case– 
control approach (Borgan et al., 1995). This was first introduced in REMs by Vu et al. (2015).

The standard log-linear formulation of a REM is a convenient simplification that does not al
ways suffice. For this purpose, Fritz et al. (2021) introduced non-linear effects to model non-linear 
structures. Nevertheless, as shown by Bauer et al. (2022), introducing non-linear effects when 
REMs are applied to the patent citation network reaches practical limitations in memory manage
ment and optimization. Standard approaches fail to model the full event set and result in extensive 
computing times.

The stochastic gradient relational event additive model (STREAM) presents a solution to these 
challenges. STREAM approximates the likelihood of REMs using a logistic regression. This allows 
for a more versatile modelling approach, where each predictor can be represented by a smooth effect 
through B-splines (De Boor, 1972; Schoenberg, 1946, 1969). To address the estimation challenges in 
large networks, particularly when using smooth effects, STREAM employs the adaptive moment 
(ADAM) optimizer (Kingma & Ba, 2017) for estimating the model’s coefficients. Overall, 
STREAM captures non-linear relationships between variables, providing more valuable interpreta
tions of time-varying effects while identifying the most influential factors driving patent citations.

For our analysis, we used data obtained from the United States Patent and Trademark Office 
(USPTO), the federal agency responsible for granting patents and registering trademarks in the 
United States. The USPTO data are one of the most comprehensive sources of patent information 
in the world as it contains precise information contained in standard digitalized formats on all pat
ents issued in the United States since 1976. While there are limitations to extrapolating the USPTO 
data to other regions, it is still a good proxy for global patent activity as well as a source for study
ing innovation and technological progress. Overall, by using STREAM, we gain important in
sights into the dynamics of patent citations while opening the road to further speculations on 
the current state of the innovation process.

In this paper, we start by describing the USPTO patent data in Section 2 on which this analysis is 
based. After developing the theoretical foundation in Section 3, we apply the framework to the 
patent citation network in Section 4. Although STREAM was specifically designed to work 
with citation networks, this modelling framework can easily be applied to model general relational 
event data.

2 Patent citations as event history data
A patent citation is an essential element of the patent system as it provides a means of demonstrating 
the novelty, non-obviousness, and importance of an invention. Indeed, a patent citation is crucial for 
both patent examiners and inventors, as it allows the examiner to evaluate the claims made in the 
patent application, and it helps the inventor establish the scope and value of their invention. In 
this regard, in many jurisdictions, applicants are legally obliged to cite those patents on which the pa
tent builds forth as part of a patent deposition. The triple consisting of the instance of deposition, the 
citing, and cited patents can be seen as an instance of a relational event. Collections of patent citations 
constitute a citation network, which is a particular kind of temporal-directed graph, where new ac
tors join the network and bind to existing nodes. In most situations, the citation is due to content simi
larity or other exogenous drivers. This is in contrast to classic social network architectures, where tie 
formation is a more endogenous process, based on, e.g. repetition, reciprocity, or triadic effects.

In large jurisdictions, patent citation networks consist of millions of time-stamped recorded cit
ation events. The generative process of the US patent deposition gives important clues for model
ling the resulting citation network. When a patent is filed, the owners have a legal requirement to 
fulfil the duty of disclosure. This consists of providing within the application a list of existing tech
nologies or scientific discoveries that are related or considered to be fundamental for the creation 
of the patenting invention. Patent office examiners will only grant the patent if the application 
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meets the uniqueness requirement and if the invention is fully disclosed in the documentation pre
sented. The patent citation process conforms to the specific structure of event history data. The 
event set consists of a citation-based relationship between a specific sending, deposited patent 
and a receiving, pre-issued patent.

The patent citation network suffers from several boundary issues, relating to both space and 
time. With regard to space, different national or transnational jurisdictions have different appli
cation processes. Despite their similarities, slight differences in the juridical procedures make 
the citation-generating process both country- or region-specific. A clear example of this is the fol
lowing difference between the citation procedures between the European Patent Office (EPO) and 
the USPTO. In the latter, the examiner committee has to integrate additional documents and pa
tent citations. European Patent Office examiners, on the other hand, do not include any citations 
but evaluate if the invention has been properly disclosed by the cited documents. This difference 
results in USPTO patent citations typically surpassing the EPO patent citations by a large amount, 
sometimes referred to as a ‘patent office bias’ (Bacchiocchi & Montobbio, 2010). We focus in this 
study on the USPTO patent citation network.

Concerning the time boundary, the electronic recording of patent citations has only started rela
tively recently. Although some sporadic efforts have been undertaken to record historic patent ci
tations, this is far from complete. We focus our analysis on those patents issued by the USPTO 
between 1976 and 2022. The starting year of our observed period coincides with the initialization 
of the digitization process of US patents.

In our analysis, we make use of the original USPTO online repository (https://bulkdata.uspto. 
gov/). This makes the raw material of this analysis as much standardized as possible in terms of 
general information available. Although there are various distributions available of the USPTO 
data, after careful evaluation we decided to avoid any third-party pre-processing. The raw 
USPTO XML files were processed in a uniform manner and combined to obtain CSV files through 
open-source software available at https://github.com/efm95/patents.

The resulting USPTO patent citation dataset consists of more than 8 million issued patents that 
generated 190 million citations. Despite the in-house processing by the USPTO, we have applied 
some data-cleaning procedures as a result of some specific features of the USPTO patents. First, by 
focusing our view on patents issued only by the USPTO means losing track of those citations that 
go to patents outside the US jurisdictions. Second, in the same way as Whalen et al. (2020) and 
Filippi-Mazzola et al. (2023), we excluded all non-utility patents, such as plant and design patents, 
as these differ in many structural ways from the utility patents. With these two additional steps, 
our final dataset consists of around 100 million citations issued by a network of 8.3 million pat
ents. The data pre-processing procedures for recreating the dataset can be found at https://github. 
com/efm95/STREAM/tree/main/data_preprocessing.

Figure 1 shows that there has been a steady increase since 1976 in the number of deposited pat
ents per year and a dramatic rise in the number of citations per patent. Various regulatory consid
erations have played a role. Failing to take those aspects into account will confound the picture of 
the true underlying innovation process. This paper aims to disentangle the causes that have con
tributed to this rise.

3 Stochastic gradient relational event additive model
Relational event models are a class of statistical models used to analyse event sequences and rela
tionships between actors through a series of exogenous and endogenous effects based on the fine- 
grained event history process. In this section, we will extend the REM by developing the STREAM 
for the network of patent citations.

3.1 Relational event model
The temporal dynamic network is represented by a sequence of time-stamped events. Each event 
ei, for i = 1, . . . , n, is recorded as the triple ei = (si, ri, ti), where si is sender, ri the receiver, and ti the 
time at which the event takes place. As in Perry and Wolfe (2013), we define a counting process for 
the directed event that involves sender s and receiver r as

Nsr(t) = #{s interacts with r up to time t}.
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The counting process Nsr(t) is a local sub-martingale for which it is possible to define a predictable 
increasing process Λsr(t), whose stochastic intensity function λsr(ts) describes the tendency for s to 
interact with r at time ts. Given the history of the network Ht− up to time t, it is possible to model 
the intensity function following the proportional hazard function (Cox, 1972). The intensity func
tion is given as the product of a baseline hazard λ0 and an exponential function of q covariates 
xsr(t) with corresponding parameter β, i.e.

λsr(t ∣ Ht− ) = λ0(t)e
􏽐q

k=1
βkxsrk(t)

1 (s,r)∈R(ti∣Ht− ){ }, (1) 

where R(ti ∣ Ht− ) is the risk set. The drivers of the relational process xsr(t) refer to quantities that 
describe known statistics of the sender. These statistics can be either endogenous or exogenous. In 
the case of endogenous covariates, they depend on past interactions. On the other hand, covariates 
are considered exogenous if they depend on the characteristics of individual nodes (monadic co
variates) or pairs of nodes (dyadic covariates). While events are assumed to be conditionally inde
pendent given the network of previous events, the inclusion of covariates in this model 
specification allows examining the impact of various drivers related to senders, receivers, or net
work topology. For a comprehensive overview of the most frequently analysed statistics within 
REM applications, we direct readers to the work of Bianchi et al. (2024), which provides an ex
tensive list and discussion of these effects.

Given the difficulties that come with dealing with the full likelihood in Eq. (1), it is possible to 
estimate the coefficients through a partial likelihood approach (Cox, 1975), in which the baseline 
is treated as a nuisance parameter. The main idea of this approximation is to specify a partial like
lihood that depends only on the order in which events occur, not the times at which they occur. 
Because the event time is by definition the publication date of the sender, the risk set R(t ∣ Ht− ) con
sists of all potential receivers r that were present in the network at time t and, as a consequence, 
that could have been cited by the issued patent s. This results in the following partial likelihood:

PL(β) =
􏽙n

i=1

exp
􏽐q

k=1 βkxsirik(ti)
􏼈 􏼉

􏽐
r∈R(ti∣Ht−

i
) exp

􏽐q
k=1 βkxsirk(ti)

􏼈 􏼉

⎛

⎝

⎞

⎠. (2) 

Figure 1. Number of deposited patents per year and the number of patent citations per patent per year since 1976.
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In its logarithmic form, Eq. (2) assumes a concave behaviour, allowing the coefficients to be esti
mated via a Newton approach. The partial likelihood in Eq. (2) is directly inspired by the model pre
sented by Butts (2008) for temporal ordinal data. Indeed, Eq. (2) is a proper full likelihood, as we 
model the probability of each subsequent event to occur as the product of multinomial probabilities.

We note that in the situation of the patent citation process, the event time and the appearance of 
the sender are equivalent. Although this changes the full likelihood, it retains the same partial like
lihood formulation. One can argue that the citing process can be described as a dynamic egocentric 
network, where conditional on the publication process, the citation process is simply a multi
nomial selectional process described by the partial likelihood.

3.2 Case–control sampling of the risk set and logit approximation
The practical applicability of the partial likelihood is compromised by runtime complexities in the 
computation of its denominator, involving the risk set R(t ∣ Ht− ) (Foucault Welles et al., 2014). As 
already noted by Butts (2008), the risk set typically grows quadraticaly with the number of nodes 
in the network, making computations slow beyond a few hundred nodes. Even though the risk set 
in our case consists only of alternative receivers, this still involves millions of patents, making the 
partial likelihood approach inaccessible for our problem.

The solution suggested by Vu et al. (2015) is to reduce computational complexity by applying 
nested case–control sampling on the risk set (Borgan et al., 1995). The idea is to analyse all the ob
served events, i.e. citations or ‘cases’, but only a small number of non-events, i.e. non-citations or 
‘controls’. Borgan et al. (1995) proved that maximum partial likelihood estimation with a nested 
case–control sampled risk set yields a consistent estimator. This approach reduces the number of com
puting resources needed to build the risk set; however, it still makes heavy use of computer memory.

Empirical evidence presented by Lerner and Lomi (2020) suggests that estimates are reliable 
with just one control per case. With a single control, the denominator in Eq. (2) is the sum of 
the rates for the cited patent with covariates xsiri and a randomly sampled non-cited patent with 
covariates xsir∗i

. Then the sampled case–control version of the partial likelihood (2) is given as

􏽦PL(β) =
􏽙n

i=1

exp
􏽐q

k=1 βk xsirik(ti) − xsir∗i k(ti)
􏼐 􏼑􏽮 􏽯

1 + exp
􏽐q

k=1 βk xsirik(ti) − xsir∗i k(ti)
􏼐 􏼑􏽮 􏽯

⎛

⎝

⎞

⎠, (3) 

which is the likelihood of a logistic regression with only success and covariate levels 
xsrk(t) − xsr∗k(t). This approximation reduces the amount of memory needed to analyse the full 
set of observed citations, while the concavity of the logit approximation ensures the convergence 
of any Newtonian optimizers.

3.3 Basis expansion of covariates
The core assumption of relational event modelling assumes that the rate of interaction between a 
sender s and a receiver r depends linearly on the covariates. Given the temporal complexity depicted 
in Figure 1, it is reasonable to assume that could lead to an oversimplified representation of the pa
tent citation process. From the logistic interpretation of the case–control partial likelihood, we pro
pose to extend the REM via a generalized additive framework (Hastie & Tibshirani, 1986) by 
modelling single covariates via basis functions splines (B-splines) (Schoenberg, 1946, 1969).

B-splines are connected piece-wise polynomial functions of order p defined over a grid of knots 
u0, u1, . . . , um, such that ul−1 < ul, for l = 1, . . . , m, on the parameter space that characterize the 
covariate xsrk(t), for k = 1, . . . , q. In our modelling framework, we decided to place the knots even
ly on the covariate support. Following De Boor (1972) recursive definition of basis function (see 
online supplementary material S1), the B-spline effect associated to the kth covariate xsrk is then a 
linear combination of d coefficients with d basis functions, i.e.

fk(xsrk) =
􏽘d

j=1

θ jkBk
j,p(xsrk).
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Figure 2 shows a practical example on how B-splines are applied to the covariates. By substituting 
the basis expansion formulation in the hazard formulation in Eq. (1), the full model for the inten
sity function becomes

λsr(t ∣ Ht− ) = λ0(t)e
􏽐q

k=1
fk(xsrk(t))

1 (s,r)∈R(ti∣Ht− ){ }, (4) 

where its partial likelihood approximation with one control is given as

􏽦PL(θ) =
􏽙n

i=1

1 + exp −
􏽘q

k=1

􏽘d

j=1

θ jk Bk
j,p(xsirik(ti)) − Bk

j,p(xsir∗i k(ti))
􏽨 􏽩

􏼨 􏼩􏼢 􏼣−1

. (5) 

To smooth the estimated B-splines resulting from maximizing the partial likelihood in Eq. (5), 
various penalization terms can be added. One reliable option is the use of P-splines (Eilers & 
Marx, 1996), especially when dealing with flexibility at the boundaries of the covariate support. 
However, in order to calculate the penalty, a considerable number of bases must be generated. 
Using large degrees of freedom translates to high memory usage, as each predictor generates 
two matrices of dimension d. As a result, over-parametrizing each predictor spline to provide 
smoothing can quickly exhaust the computer memory, making this procedure unsuitable for mod
elling large networks. In such situations, a cross-validation approach is preferred to select an ap
propriate number of basis functions, as memory constraints pose an upper limit on the number of 
degrees of freedom of the splines.

3.4 Recovering baseline hazard
The partial likelihood approach avoids modelling the baseline hazard. Although this brings signifi
cant benefits in estimating the B-splines, it also loses information about the underlying rate of the 
process. The advantage of formulating the REM as a Cox regression is that we can rely on the sur
vival modelling literature to estimate the cumulative baseline hazard post-hoc. We adapt the base
line estimator from the nested case–control sampling (Borgan et al., 1995) to estimate the 
underlying rate of the citation process. The adapted estimator for the cumulative baseline hazard 
is given as

􏽢Λ0(t) =
􏽘

ti<t

exp
􏽘q

k=1

f̂k(xsirik(ti))

􏼨 􏼩

+ exp
􏽘q

k=1

f̂k(xsir∗i k(ti))

􏼨 􏼩􏼢 􏼣−1
2

n(ti)
, (6) 

Figure 2. Splines associated to the nodal effects. Left: receiver-publication year uniform basis transformation. 
Right: receiver-publication year estimated effect, where the basis model matrix is multiplied with its respective 
vector of estimated coefficients.

J R Stat Soc Series C: Applied Statistics, 2024, Vol. 73, No. 4                                                             1013
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/4/1008/7665370 by U
niversity of Lugano user on 04 Septem

ber 2024



where n(ti) = |R(ti ∣ Ht−
i
)| is the number of events at risk at ti, for i = 1, . . . , n, where ti is the abso

lute time. A point-wise baseline hazard estimate can be calculated by taking differences between 
subsequent events of the cumulative hazard, i.e.

λ̂0(ti) =
􏽢Λ0(ti) −􏽢Λ0(ti−1)

ti − ti−1
, for i = 1, . . . , n. (7) 

3.5 Parameter estimation using stochastic gradient descent
While the case–control partial likelihood helps to reduce computational complexity, it is not 
enough to overcome the optimization challenges presented by the size of the patent citation net
work. Most machine-learning techniques use stochastic gradient descent methods to address large 
optimization challenges. By separating the data stream into separate batches and adjusting the pa
rameters after assessing each batch in succession optimization convergence can be achieved effi
ciently. As a result, even when working with large datasets, estimating the model parameters 
becomes manageable.

In this problem, we have opted for a stochastic gradient descent (SGD) approach through the 
ADAM optimizer to fit the partial likelihood. Stochastic gradient descent has proved to be a reli
able technique for estimating logistic regression models in large-scale scenarios (Bottou, 2010; Lin 
et al., 2007). Different momentum-based approaches have been proposed in the last decade to 
solve problems connected to local minima, such as AdaGrad (Duchi et al., 2011) or 
ADADELTA. Among these, ADAM has gained in popularity in the machine-learning field for 
its scalability and its convergence reliability. ADAM uses adaptive learning rates that depend 
on estimates of the first and second moments of the gradients of the observed batch. It maintains 
an exponentially decaying average of past gradients and squared gradients, which it then uses to 
calculate the update step for the model parameters.

In many real-world scenarios, gradients are often sparse, which means that only a small fraction 
of the parameter’s partial derivatives are non-zero at any given time. In traditional gradient descent 
algorithms, these sparse gradients can result in slow convergence or even divergence. ADAM han
dles sparse gradients by incorporating a technique called moment correction, which adjusts the mo
ment terms based on the frequency of non-zero gradients, which allows the optimizer to effectively 
use the sparse gradients. Although we did not experience any notable problems with sparse gradients 
in the optimization procedures, ADAM has been proven to be more stable than the classic SGD 
method. Let ∇􏽦PL(θ)b be the gradient evaluated on the partial likelihood on batch b. The ADAM 
routine updates the first and second moments according to the following routine:

mb ← ξ1mb−1 + (1 − ξ1)∇􏽦PL(θ)b

vb ← ξ2vb−1 + (1 − ξ2)∇􏽦PL(θ)2
b, 

where m and v are the first- and second-moment gradients, respectively, and ξ1 and ξ2 are hyper- 
parameters that control the importance of past information in updating the moments.

Furthermore, the ADAM algorithm uses bias correction to account for the bias introduced in the 
first and second moments of the gradients. The bias correction is necessary because the moving 
averages of the gradients (the first and second moments) are initialized to zero and thus biased to
wards zero, especially at the beginning of the training process. To correct this bias, ADAM applies 
a correction term to the moving averages, which is proportional to the learning rate and inversely 
proportional to the number of iterations. Let s be the current step of the training process, then the 
first and second moments are corrected as follows:

m̂b,s =
mb

1 − ξs
1

v̂b,s =
vb

1 − ξs
2

, 

where as s increases, ξs
1 and ξs

2 converge to 0. The model parameters are then updated according to 
the following rule:
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θb ← θb−1 + ψ
m̂b,s
����
v̂b,s

􏽰
+ ϵ

, 

where ψ is the learning rate that determines the magnitude of each parameter update, while ϵ rep
resents a small scalar added to prevent division by zero (usually 1e-8). For our application, ψ has 
been kept constant.

The optimization procedure is repeated until the algorithm reaches the maximum point and the 
gradient becomes zero. At this stage, the method converges to a stationary distribution, indicating 
that the parameters have achieved a stable state where further parameter updates do not improve 
the model performance. It is important to note that the optimization process can be stopped earlier 
if the performance on a validation set starts deteriorating or if the maximum number of iterations 
is reached.

Overall, ADAM has demonstrated its effectiveness as a reliable optimizer for various machine 
learning applications as its computational complexity involves a constant number of operations 
that do not depend on the number of covariates. This gives STREAM a computational complexity 
on each batch of O(qbd), where q is the number of covariates, b represents the batch size, and d is 
the basis dimensions. As a result, STREAM is estimated efficiently for a large number of observa
tions even with the addition of additive components described by B-splines.

4 Modelling patent citations
The key question we seek to answer is what are the drivers of patent citations. The mechanisms 
that produce the patent citation network can be endogenous and exogenous. We will begin 
with the effects that we considered and how models including various effects have been compared. 
We then discuss a description of the model implementation. We complete the section with a dis
cussion of the results we have found and their implications for the patent citation process.

4.1 Potential drivers of patent citations
In this section, we describe the type of drivers we consider in the patent citation process. The spe
cific nature of citation networks prevents the emergence of typical network effects that REMs com
monly capture. This is primarily because each patent can only cite other patents from the past and 
only at the time of its own publication. While many fundamental network effects are absent by 
definition in this context, the ones described in this section adequately capture distinct factors 
of the patent citation process. We divide the type of tested statistics into node effects, patent simi
larity effects, and time-varying effects, related to viral and saturation considerations of patent ci
tations. Table 1 contains an overview of all the effects and their respective mechanisms. Absent 
from the table are triadic effects. However, one may argue that due to the size of the patent citation 
network open triangles are unlikely to exert influence. Extensive model selection analysis can be 
found in the online supplementary material S1.

4.1.1 Node effects
Nodal effects refer to specific information about the cited patent, such as the publication year of 
the cited patent. A non-linear cited patent publication year effect can uncover any tendencies 
where patents issued in specific years are being cited more consistently. This can potentially indi
cate a period of significant technological advancement.

In addition, the time difference between the issue dates of the citing patent and the cited patent 
can also be a factor in driving the patent citation network. This time lag effect can provide insight 
into whether patents tend to cite more recent material, reflecting the current state of technological 
innovation. By counting the number of days between the citing patent issue date and the receiver- 
publication date, we can model this time lag effect and account for the time that has passed be
tween the two nodes appearing in the network.

Not all patents are equally important in terms of their connectivity. One hypothesis may be that 
if a particular patent summarizes a lot of older knowledge, it may attract more citations. 
This hypothesis is sometimes referred to as the cumulative process of knowledge creation 
(Scotchmer, 1991). To test for this hypothesis, we use the receiver outdegree as a proxy for 
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centrality. In this context, the outdegree of a patent represents the number of patents itself cites at 
the time of its publication.

4.1.2 Patent similarity effects
Citations in patents arise from the assumption that there exists some technological similarity be
tween the citing and the cited patent. However, technological relatedness is not a particularly tan
gible concept. Two distinct types of relatedness are often used to capture this idea.

The first type is a direct textual similarity between the citing and cited patents. Although there 
have been debates about the reliability of textual similarity as a measure of technological related
ness, recent studies (Filippi-Mazzola et al., 2023; Kuhn et al., 2020) have shown that it plays an 
important role in patent citation networks, when combined with other metrics. Following the 

Table 1. Effects and their corresponding mechanisms

Effect Mechanism Statistic

Receiver-publication year tr

Time lag ts − tr

Receiver outdegree
􏽐

r′∈R(tr ∣Ht−r ) 1{(r,r′ ,tr)}

Textual similarity
xr ·xs
‖xr‖‖xs‖

IPC relatedness |IPCr∩IPCs |
|IPCr∪IPCs |

Cumulative citations received
􏽐

ti<ts
1{(s,r,ti)}

Time from last event minti<ts (ts − ti) ∣ 1{(si ,r,ti)=1}
􏼈 􏼉

Note. r represents the cited patent, i.e. the receiver, s represents the citing patent, i.e. the sender. ts and tr, respectively, 
represent the issue date for the sender and for the receiver. xr and xs are the patent abstract embedding vectors, while IPCr 
and IPCs are vectors of IPC patent classes.
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same procedure described in Filippi-Mazzola et al. (2023), we calculate textual similarities of a 
pair of patents through a pre-trained Sentence-BERT neural network (Reimers & Gurevych, 
2019). It uses a vectorized loop to compute pair-wise similarities of the abstracts of citing and cited 
patents.

Another important measure of technological relatedness is the overlap in technology classes be
tween the citing and the cited patents. Patent classification systems, such as the International 
Patent Classification (IPC) scheme, are designed to facilitate the search for related technologies 
by classifying patents into a systematic hierarchical structure. Deeper levels of the classification 
indicate higher levels of specificity in the technological field. However, patent classes present sev
eral challenges. Patents often straddle various technological fields, and, as a result, may be allo
cated to multiple IPC classes. Furthermore, new IPC classes have been created, or existing ones 
have been merged or split since the creation of the USPTO (Younge & Kuhn, 2015), leading to 
a somewhat organic organization of technology classes. Despite these challenges, patent classes 
remain a crucial element in the patent-issuing process. To test the hypothesis that the assigned la
bels play a role in the citation process, we calculate the Jaccard similarity index for the IPC classes 
of the cited and citing patents (Yan & Luo, 2017). The Jaccard index measures the similarity of the 
patent classes between two patents, taking into account the sub-class levels of the IPC classifica
tion. Filippi-Mazzola et al. (2023) have shown that both the main component section and the third 
component sub-class share similar importance in analysing patent classes.

4.1.3 Time-varying effects
We will also consider two time-varying effects. Citation networks have distributional character
istics that are consistent with a viral process (Redner, 1998). Popular patents, for whatever reason, 
may be more likely to draw more citations. We define for every patent the cumulative number of 
citations received. This is also known in network science as receiver indegree or preferential 
attachment.

This popularity effect may experience saturation. For this reason, we also consider the time from 
the last event, i.e. the last time the patent was cited. This variable captures how long it has been 
since the patent was last cited, and its influence on the rate of receiving a new citation.

Including time-varying effects to the model specification presents an additional challenge. 
Specifically, each time a new control is sampled, the time-varying covariates need to be updated 
within the risk set according to the current observed event time t. Consequently, this complicates 
the creation of the model matrix. To overcome this problem, we used a similar approach of the 
‘caching’ data structures method proposed by Vu et al. (2011). Rather than uniformly sampling 
xsr∗k(t) from R(t ∣ Ht− ), we select a subset of control candidates from the risk set, denoted by 
R̃(t ∣ Ht− ) ⊆ R(t ∣ Ht− ), such that for each event time t, we sample c potential receivers as control 
candidates. For each element in R̃(t ∣ Ht− ), we update its relative time-varying effect at every ob
served time t. Depending of the size of c, we can store R̃(t ∣ Ht− ) in memory, without needing to 
update the full risk set R(t ∣ Ht− ) every time a non-event is sampled. This significantly reduces 
the burden of creating the model matrix.

Overall, incorporating time-varying effects in our model specification improves the accuracy 
and robustness of our analysis by accounting for the dynamic nature of patent citation behaviour 
over time.

4.2 Implementation
Although the process of generating basis functions from events and estimating the coefficients can 
be tackled by well-optimized R algorithms like the gam function in the mgcv package (Wood, 
2011), it is unable to deal with 100 million patent citations. The R software memory management 
system struggles with large data objects, resulting in limitations to the practical applicability of 
routines, such as gam. This complicates the estimation of the coefficients through the optimizers 
in mgcv as they would require a considerable amount of time to reach convergence. Spline basis 
expansions require the storage in memory of as many n × d matrices as there are covariates in the 
model. In fact, in the REM partial likelihood formulation (5), this involves 2q matrices for both 
cases and controls.
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The model fitting problem will, therefore, be divided into two parts: (a) defining an efficient way 
to compute the basis function for millions of rows and (b) avoiding generating matrices that exceed 
the available memory.

To tackle the first problem, we create a vectorized recursive algorithm that efficiently generates 
basis functions from millions of elements in a vector. Dividing the input data into batches is analo
gous as taking random samples from a larger population. The value associated with each obser
vation following the basis function transformation is invariant to the position of the event in 
the observed set. Rather than applying the basis function transformation on the entire observed 
stream of the events, these can be computed directly on each batch when the gradient needs to 
be computed. This reduces memory usage at the expense of a small increase in computational 
costs. The implementation relied on the Python suite PyTorch (Paszke et al., 2019), which also 
provides access to the computational benefits of graphic processor units (GPUs) to scale matrix 
multiplications and gradient computations. The vectorized nature of Pytorch and the use of 
GPU computational power are particularly suited for the recursive algorithm, drastically reducing 
the computational time for generating B-splines. Then, by dividing the stream of data into different 
batches, we can efficiently estimate the coefficients by iteratively updating them with respect to the 
back-propagated gradients, computed using the negative log-partial likelihood (5) as our loss met
ric. The code for STREAM can be found at https://github.com/efm95/STREAM.

4.3 Interpretation of results on USPTO patent citation data 1976–2022
The stochastic component of the optimizing ADAM method introduces some additional random
ness into the estimation of the model parameters but given the size of the data we obtain highly 
concentrated estimates. Figures 2–5 show the fitted splines with 10 degrees of freedom. 
Uncertainty estimates are provided via point-wise quantile confidence intervals estimated through 
100 non-parametric bootstrap resamples. The y-axes indicate the log-hazard contribution to the 
citation rate of an individual patent. An increase by 0.7 on this scale indicates a doubling of the 
citation rate.

4.3.1 Node effects
One remarkable result can be seen in the receiver-publication year curve in Figure 2. Contrary to 
the widely reported continuous increase in the patent depositing and patent citation process (Kuhn 
et al., 2020; Whalen et al., 2020), the rate with which an individual patent gets cited possesses a 
distinct peak. The peak occurs shortly after the year 2000. This means that, after accounting for all 
other effects, patents that were published around 2000 are, individually, attracting more citations 
than at any other period from 1976 to 2022. Patents from around 2000 tend to attract 70% more 
citations than those published around 2022, and more than 5 times more citations than those pub
lished in 1976. While this study is limited to a macro-level network analysis, we hypothesize sev
eral key technical breakthroughs may have occurred around 2000. Park et al. (2023) also reported 
the recent decline in the disruptiveness of patents. However, in contrast to their findings, we find 
clear evidence for monotone increasing innovation from 1976 before peaking around the year 
2000. It may be that by failing to take into account the growing patent network, their initial de
cline is an artifact.

The temporal lag spline in Figure 3 indicates at which time in the future patents are most likely to 
be cited. The curve shows that there is a peak around year 5. This indicates the presence of a sweet 
spot of approximately 3–7 years after the original publication of the patent where citations are 
most likely to arise. It is important to note that this temporal lag effect could be influenced by vari
ous factors such as the pace of technological development, the lifespan of technology, and the over
all trends in the field. This effect provides valuable insights into the timing of patent publications 
and their impact on the citation network. By identifying this sweet spot where citations are more 
likely to arise, inventors can strategically plan their patent filing and publication strategies to 
increase their chances of being cited and recognized in the field. Furthermore, the inclusion of 
temporal lag into the model deals with the boundary problem, as it accounts for the fact that 
recently published patents are unlikely to have gathered a significant number of citations.

The receiver outdegree effect in Figure 3 shows that patents that cite a lot of other patents are 
more likely to be cited themselves. This finding highlights the importance of citing all relevant 
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patents in one’s patent application, as it makes a patent more visible and accessible to other inven
tors, increasing the likelihood of being cited. This result is consistent with previous research that 
has emphasized the importance of network position in predicting innovation outcomes (Uzzi, 
1997). Furthermore, this finding has practical implications for policymakers and inventors who 
may wish to increase the likelihood of their patents being cited. By fostering collaboration and net
working opportunities, inventors can improve their chances of connecting to other inventors and 
increase their outdegree, thus increasing the visibility of their work.

4.3.2 Similarity effects
The curves for both textual similarity and IPC relatedness shown in Figure 4 demonstrate the sig
nificance of the technological similarity between the citing and cited patents. It highlights how pat
ents that are more closely related are more likely to cite each other. The textual similarity curve 
indicates a stronger tendency towards citing patents that share linguistically similar abstracts. 
The IPC relatedness curve, on the other hand, indicates that patents that share even a limited num
ber of technology classes have a higher probability of being cited.

Furthermore, the weight placed on the textual similarity effect is noteworthy. Compared to pat
ents that share a linguistic similarity less than 0.2, patents that share a similarity larger than 0.5 are 
60 times more likely to cite each other. While the IPC relatedness effect is not as strong as the 
textual similarity effect, it still increases the citation rate by more than 7 times, between patents 
that share at least 0.3 IPC classification on the Jaccard scale.

These findings confirm results from previous studies (e.g. Trajtenberg & Jaffe, 2002). Despite 
the structural changes over time in the technological similarity across cited and citing patents 
(Kuhn et al., 2020; Whalen et al., 2020), patents with greater technological similarity remain 
more likely to cite each other.

4.3.3 Time-varying effects
The two time-varying effects in Figure 5 demonstrate the dynamic nature of patent citations. The 
cumulative citation count effect reveals how the number of citations a patent has received so far 
influences its likelihood of being cited in the future. This effect is particularly notable as the log- 
hazard contribution shows a rapid increase after receiving more than 20 citations, indicating a 
positive feedback loop where the more citations a patent receives, the more likely it is to receive 
additional citations. This snowball effect is a crucial factor in determining the significance of a pa
tent within the network, and it underscores the importance of early recognition and citation of 
relevant breakthroughs.

On the other hand, the time from last event effect highlights the inverse relationship between the 
time interval from the last citation and the likelihood of receiving subsequent citations. As the time 
interval grows longer, the probability of receiving additional citations decreases. This effect is 
shown by the steady decrease in log-hazard contribution. This trend underlines the importance 
of continuous recognition of relevant patents to maintain their significance and relevance within 
the citation network.

Figure 3. Splines associated to the nodal effects. Left: time lag. Right: receiver outdegree in log terms.
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It is worth noting that these two effects work in together to shape the dynamic nature of patent 
citations within the network. The snowball effect of the cumulative citation count effect can coun
teract the decay caused by the time from last event effect, but only up to a certain point. Eventually, 
even the most significant patents will fade in relevance if they are not consistently recognized and 
cited within the network.

Similarly, patents with very high continuous citation could have invariably a short time since 
last citation and therefore receive an additional boost from the time from last event effect.

An alternative explanation for patents that are very popular for a short period but then fade out 
of the spotlight could be highlighting the use of a different version of the indegree covariate that 
only considers ‘recent indegree’. This could be done either through a sliding window approach or 
with a decay mechanism, such as the one proposed by Brandes et al. (2009), that allows modelling 
this effect.

4.4 Estimated baseline hazard
To analyse the overall citation rates over time, we estimate the baseline hazard by differentiating 
the adapted version of the Borgan et al. (1995) estimator presented in Eq. (7), using the average 
coefficients obtained from the repeated STREAM fits. To capture the general trend and present 
a clearer picture of the base hazard, we applied a Gaussian filter to the estimated baseline. 
Figure 6 shows the estimated baseline hazard, which provides a visual representation of the overall 
pattern of the hazard rates over the observed period.

As anticipated, the curve demonstrates that the baseline rate of being cited increases over time. 
The general increasing trend of the curve indicates that patents have started to cite up to 5 times 

Figure 5. Splines associated with the time-varying effects. Left: cumulative citations received in log scale. Right: 
time from last event in days in log scale.

Figure 4. Splines associated to the similarity effects. Left: textual similarity. Right: IPC relatedness.

1020                                                                                                                            Filippi-Mazzola and Wit
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/4/1008/7665370 by U
niversity of Lugano user on 04 Septem

ber 2024



more since the 1980s. This may be attributed to the accumulation of knowledge and technological 
advancement over time. Moreover, this result underscores the importance of considering the tem
poral dimension when analysing citation patterns and provides valuable insights into the dynamics 
of knowledge diffusion in patent systems.

Furthermore, the estimated baseline reveals an interesting trend in the patent citation network. 
Specifically, we note the sudden increase in the baseline hazard in the year 2010. One possible explan
ation for this observed increase is the legal changes in the applicant’s duty of disclosure that took place 
in 2010. As reported by Kuhn (2010), these legal changes led to a drastic increase in the number and 
scope of cited references in patent documents. Consequently, more citations were included that were 
further afield from the citing patent, resulting in a generally higher rate of patent citations.

5 Conclusions
Relational event models are a sophisticated and effective approach for analysing complex patterns 
in temporal network event data. In this study, we applied this framework to patent analysis to 
identify the drivers of patent citations. The use of REMs in studying large and intricate structures 
is limited by the computational complexity of modelling non-linear effects, which may result in an 
oversimplification of the network complex interplay of dynamic relationships. Furthermore, the 
inherent limitations of standard REM approaches in accommodating large datasets render them 
ineffective in managing the magnitude and complexity of the citation network.

To address these challenges, we introduced the STREAM. This model integrates non-linear 
modelling with nested case–control sampling, effectively approximating the likelihood of a 
REM by logistic regression. By applying STREAM to a network of patent citations spanning 
from 1976 to the end of 2022 with over 8 million patents and over 100 million citations, we 
were able to identify patterns that affect the patent citation rate.

Our findings offer several interesting insights. While some effects are straightforward, others re
veal peculiar patterns that require further investigation. For instance, we found that patents from 
around the year 2000 have been much more influential than from any other period. This suggests 
that there must have been several important technological innovations in those years.

Figure 6. Baseline hazard estimated through the adapted estimator in Eq. (7) from Borgan et al. (1995). The 
smoother line is the application of a Gaussian filter to smooth the resulting estimate and capture the general trend of 
the baseline.
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There are several ways the analysis can be extended. Further research is required to assess which 
areas of technology have been innovating more and how this has developed through time. We 
could also consider a more sophisticated approach to incorporate the possible time decay of 
some effects. It would be interesting to evaluate the behaviour of, e.g. the textual similarity curve 
in Figure 4 over the observed period, particularly in light of recent discussions on changes in the 
generative process of patent citations (Filippi-Mazzola et al., 2023; Kuhn et al., 2020). However, 
such studies would require careful consideration with respect to the underlying changes in the legal 
patent framework. Approaches like the ones proposed by Juozaitienė and Wit (2022) could be fur
ther investigated to be applied to the STREAM to asses the temporal decay of predictors.

In this work, the citation dynamics are modelled as a collection of dyadic interactions between 
patents. This is a simplification. Typically, when a citation occurs, a patent cites multiple receivers. 
This shows how further research could expand the current STREAM approach to modelling poly
adic interactions among patents. Indeed, the flexibility of the STREAM approach could combined 
with the newly proposed relational hyper-event model (Lerner & Lomi, 2023) to gain further 
understanding of the patent citation network’s intricate dynamics.

Overall, the STREAM approach is a promising solution to overcome limitations of standard 
REMs in modelling complex non-linear effects in large event networks.
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